
An Ethnographic Study of Distributed
Problem Solving in Spreadsheet
Development

Bonnie A. Nardi
James R. Miller

Hewlett-Packard Laboratories
Human-Computer Interaction Department
1501 Page Mill Road
Palo Alto, CA 94304

ABSTRACT

In contrast to the common view of spreadsheets as “single-user” programs, we have
found that spreadsheets offer surprisingly strong support for cooperative development of
a wide variety of applications. Ethnographic interviews with spreadsheet users showed
that nearly all of the spreadsheets used in the work environments studied were the result
of collaborative work by people with different levels of programming and domain
expertise. Cooperation among spreadsheet users was spontaneous and casual; users
activated existing informal social networks to initiate collaboration.

INTRODUCTION

People organize themselves and their work so that problems can be solved collectively
(Vygotsky, 1979; Bosk, 1980; Lave, 1988; Newman, 1989; Seifert & Hutchins, 1989).
We are interested in the artifacts that support and encourage this collective problem
solving. A spreadsheet is a “cognitive artifact” (Chandrasekaran, 1981; Holland &
Valsiner, 1988; Norman & Hutchins, 1988; Norman, 1989) that can be understood and
shared by a group of people, providing a point of cognitive contact that mediates
cooperative work. In this paper we examine the shared development of spreadsheet
applications. We report the results of our ethnographic study of spreadsheet use in which
we found that users with different levels of programming skill and domain knowledge
collaborate informally to produce spreadsheet applications. This paper is a descriptive,
empirical report of collaborative work practices, meant to document the kinds of
cooperation found among spreadsheet users, and the ways in which problem solving is
distributed across users with different skills and interests. In other papers (Nardi &
Miller, 1990a, 1990b) we analyze how the spreadsheet itself provides a basis for
collaborative work, arguing that the division of the spreadsheet into two distinct
programming layers permits effective distribution of computational tasks across different
kinds of users.

In contrast to studies of computer-supported cooperative work (CSCW) that focus on
software systems specifically designed to support cooperative work within an
organization (Grudin, 1988). we address how a certain class of traditional personal
computer applications - spreadsheets - function as de facto cooperative work
environments. We describe how spreadsheet users work together, even though
spreadsheets lack “designed-in” technological support for cooperative work.

We use the term “cooperative work” in the general sense of “multiple persons working
together to produce a product or service” (Bannon & Schmidt, 1989). In this paper we

CSCW 90 Proceedings October 1990

197

want to draw attention to a form of cooperative computing already well established in
office environments. As we will describe, spreadsheets emerge as the product of several
people working together, though not in formally designated teams, task forces, or
committees. On the contrary, spreadsheet work flows across different users in fluid,
informal ways, and cooperation among spreadsheet users has a spontaneous, self-directed
character.

Our research highlights two forms of cooperative work that are central to computer-based
work and that have received little attention in the CSCW community: the sharing of
programming expertise and the sharing of domain knowledge. Because of the CSCW
emphasis on computer systems that enhance interpersonal communication (e.g. e-mail,
remote conferencing, shared whiteboards), the importance of collaboration in
programming itself has been overlooked. The current interest in “empowering users”
through participatory design methods (Bjerknes, Ehn & Kyng, 1987) and end user
programming systems (Panko, 1988) will, we believe, begin to draw attention to
collaborative programming practices of the kind we describe in this paper. The sharing
of domain knowledge has been only implicitly recognized in CSCW research; studies
tend to focus on communication techniques themselves, rather than on what is being
communicated. In this paper we describe how spreadsheet users exchange domain
knowledge in the process of spreadsheet development.

Since 1986 about five million spreadsheet programs have been sold to personal computer
users, second in number only to text editors, and far ahead of any other kind of software
(Alsop, 1989). Spreadsheets deserve our interest as the only widely used end user
programming environment; text editing and drawing packages are used by many, but
involve no programming. With spreadsheets, even unsophisticated users can write
programs in the form of formulas that establish numerical relations between data values.
Users who show no particular interest in computers per se voluntarily write their own
spreadsheet programs, motivated by interests beyond or completely unrelated to job
requirements - a claim that cannot be made for any other kind of software that we know
of. In large part this is because the spreadsheet’s “twinkling lighuY1- the automatically
updating cell values - prove irresistible. Spreadsheet users experience a real sense of
computational power as their modifications to data values and formulas appear instantly
and visibly in the spreadsheet.

Spreadsheets have had an impact on personal computing well beyond the financial uses
envisioned by the creators of VisiCalc, the first personal computer spreadsheet program.
Spreadsheets are now used for mathematical modeling (Arganbright, 1986), simple
databases, managing small businesses, forecasting trends (Janowski, 1987), analyzing
scientific and engineering data, and of course the financial applications for which they
were first intended, to name but a few examples. In the research community,
investigators have used the spreadsheet interface as a model for other types of systems,
such as the logic programming spreadsheet of Spenke and Beilken (1989). Lewis and
Olson (1987-1988), Piersol (1986), and Van Emden, Ohki, and Takeuchi (1985) have
also built other kinds of prototypes that leverage off the spreadsheet model.

Despite the prevalence of spreadsheets in the personal computing world, spreadsheets
have not been widely studied. Kay (1984), Hutchins, Hollan, and Norman (1986), and
Lewis and Olson (1987) enumerated some of the benefits of spreadsheets, including a
concrete, visible representation of data values, immediate feedback to the user, and the
ability to apply formulas to blocks of cells. There are some experimental studies of
spreadsheet use that focused on small aspects of the user interface; for example, Olson
and Nilsen (1987) contrasted the methods by which subjects entered formulas in two
different spreadsheet products. (See also Brown & Gould, 1987, and Napier, Lane,

IWe are indebted to Ralph Kimball of Application Design Incorporated of Los Gatos,
California for this turn of phrase.

CSCW 90 Proceedings October 1990

198

Batsell, & Guadango, 1989.) In another type of study, Doyle (1990) reported his
experiences teaching students to use Lotus 1-2-3,2 although most of his observations
could apply to any kind of software (e.g., inconsistencies in file naming conventions).We
know of no literature on collaborative work practices among spreadsheet users, or among
users of any kind of end user programming environment? and we are still far from
understanding spreadsheets and the ways in which they are used.

Our study began with the traditional “single-user application” perspective. We were (and
still are) interested in spreadsheets as computational devices, and wanted to learn more
about how spreadsheet users take the basic structure of a spreadsheet and mold it into an
application that addresses some specific need. In particular, we were interested in the
success non-programmers have had in building spreadsheet applications. We saw no
reason to dispute Grudin’s (1988) comments that spreadsheets are “single-user
applications” in which “an individual’s success . . . is not likely to be affected by the
backgrounds of other group members,” and that “motivational and political factors” are
unimportant for spreadsheet users. However, as the study progressed, we were struck by
two things:

. Spreadsheet co-development is the rule, not the exception. In the
office environments we studied, most spreadsheets come about
through the efforts of more than one person. The feeling of co-
development is very strong; people regularly spoke of how “we” built
a spreadsheet, and were very aware of the cooperative nature of the
development process.

l Spreadsheets support the sharing of both programming and
domain expertise. Because of our focus on end-user programming,
we soon noticed that one reason spreadsheet users are so productive
is that they successfully enlist the help of other, more knowledgeable
users in constructing their spreadsheets. In the same way,
experienced co-workers share domain knowledge with less
experienced colleagues, using the spreadsheet as a medium of
communication.

We do not mean to suggest that spreadsheets are never developed by individual users
working completely independently. But presupposing that spreadsheets are “single-user”
applications blinds us to seeing the cooperative use of spreadsheets, of which we found
much evidence in our study. Our data show that spreadsheet users share programming
expertise as they work together building spreadsheets, and train each other in new
techniques. Users transfer domain knowledge via spreadsheet templates and the direct
editing of spreadsheets. We will describe these activities in some detail via ethnographic
examples from the research.

METHODS AND INFORMANTS

The ideas presented in this paper are based on our ethnographic research including
extensive interviewing of spreadsheet users, and analysis of some of their spreadsheets
which we collected during the course of interviewing. We have chosen to study a small
number of people in some depth to learn how they construct, debug, and use
spreadsheets. We are interested in the kinds of problems for which people use
spreadsheets and how they themselves structure the problem solving process - topics

2Lotus and l-2-3 are registered trademarks of Lotus Development Corporation.

31n his book on end user programming, Panko (1988) briefly mentioned a study in which
users in a training class helped one another, but there is no other discussion of
cooperative work practices in the book.

CSCW 90 Proceedings October 1990

199

that by their very nature cannot be studied under the controlled conditions of the
laboratory. We have also examined and worked with several different spreadsheet
products including VisiCalc (the original personal computer spreadsheet), Lotus l-2-3
and Microsoft ExcelP

For the field research we interviewed and tape recorded conversations with spreadsheet
users in their offices and homes. 5 Our informants were found through an informal
process of referral. We told them that we were interested in software for users with little
formal programming education and that we wanted to talk to people actively using
spreadsheets. The interviews were conversational in style, intended to capture users’
experiences in their own words. A fixed set of open-ended questions was asked of each
user, though the questions were asked as they arose naturally in the context of the
conversation, not in any particular order. During the interview sessions we viewed users’
spreadsheets on-line, and sometimes in paper form, and discussed the uses and
construction of the spreadsheets. The material in this paper is based on about 350 pages
of transcribed interviews with 11 users, though we focus on a smaller subset here to
provide ethnographic detail.

Informants in the study were college-educated people employed in diverse companies,
from small start-ups to large corporations of several thousand employees. Informants had
varying degrees of computer experience ranging from someone who only recently learned
to use a computer to professional programmers. Most were non-programmers with 3-5
years experience with spreadsheets. Informant names used here are fictitious. Four sets
of spreadsheet users illustrate the cooperative nature of spreadsheet development:

l Betty and Buzz run a start-up company with eight employees. Betty
is the chief financial officer of the company and Buzz a developer of
the product the company produces. Betty does not have a technical
background though she has acquired substantial computer knowledge
on her own, largely through using spreadsheets. Buzz is a
professional programmer. They use spreadsheets for their customer
lists, prospective customer lists, product sales, evaluation units,
tradeshow activity, and accounts receivable.

l Ray manages a finance department for a large corporation and has a
large staff. He has an engineering degree and an MBA, and some
limited programming experience. He uses spreadsheets to plan
budget allocations across several different departments, to track
departmental expenses and headcounts, and to forecast future
budgetary needs.

l Louis, in his seventies, is semi-retired and works as an engineering
consultant about two hours a day for a large manufacturing
corporation. He has been working with Lotus 1-2-36 for about a
year, and has no other computer experience of any kind (he uses
Lotus as his word processor). Louis’s main application is analyzing
test data from his engineering simulations of radar designs. He
learned Lotus with the help of his son Peter, an architectural
engineer.

4Microsoft and Excel are registered trademarks of Microsoft Corporation.

5The interviews were conducted by the first author. We use the plural “we” here for
expository ease.

6A11 those in our study use either Lotus l-2-3 or Microsoft Excel.

CSCW 90 Proceedings October 1990

200

l Laura and Jeremy work for a medium size high tech equipment
manufacturer. Laura is an accountant, the controller of the company.
She directs a staff of eight, all of whom use spreadsheets. Laura is
knowledgeable about spreadsheets but has no programming
experience. Jeremy, Laura’s manager, is the chief financial officer of
the company. He is skilled at spreadsheet macro and template
development.

Segments from the interviews will be presented at some length as we feel it is most
convincing to let users speak for themselves. The segments are verbatim transcriptions.

COOPERATIVE DEVELOPMENT OF SPREADSHEETS

Bridging differences in programming expertise

Spreadsheets support cooperative work among people with different levels of
programming skill. We have found it useful to break the continuum of skill level into
three groups: non-programmers, local developers, and programmers. Non-programmers
have little or no formal training or experience in programming. Local developers have
substantial experience with some applications, and often, much more willingness to read
manuals. Programmers have a thorough grasp of at least one general programming
language and a broad, general understanding of computing. Local developers typically
serve as consultants for non-programmers in their work environments. Local developers
may in turn seek assistance from programmers.

It is also important to note that the three kinds of users vary along another related
dimension: interest in computing. In some cases non-programmers may be budding
hackers, but many are simply neutral towards computers, regarding them as a means to an
end rather than objects of intrinsic interest. A key to understanding non-programmers’
interaction with computers is to recognize that they are not simply under-skilled
programmers who need assistance learning the complexities of programming. Rather,
they are not programmers at all. They are business professionals or scientists or other
kinds of domain specialists whose jobs involve computational tasks. In contrast, local
developers show a direct interest in computing, though their skills may be limited in
comparison to programmers as a result of other demands on their time.

Betty and Buzz’s work on spreadsheets for their company’s finances offers a good
example of cooperation among spreadsheet users with different levels of programming
skill. As individuals, Betty and Buzz are quite,different. Betty has a strong focus on her
work as chief financial officer, and claims few programming skills. She has limited
knowledge of the more sophisticated capabilities of the spreadsheet product she uses,
knows little about the features of competing spreadsheets, and relies on Buzz and other
more experienced users for assistance with difficult programming tasks, training, and
consulting. In contrast, Buzz has a clear technical focus and strong programming skills.
He is well-informed about the capabilities of the spreadsheet product in use in the
company and of other competing products, and provides Betty with the technical
expertise she needs.

From this perspective, then, Betty and Buzz seem to be the stereotypical end
user/developer pair, and it is easy to imagine their development of a spreadsheet to be
equally stereotypical: Betty specifies what the spreadsheet should do based on her
knowledge of the domain, and Buzz implements it. This is not the case. Their
cooperative spreadsheet development departs from this scenario in two important ways:

9 Betty constructs her basic spreadsheets without assistance from Buzz.
She programs the parameters, data values and formulas into her
models. In addition, Betty is completely responsible for the design
and implementation of the user interface. She makes effective use of

CSCW 90 Proceedings October 1990

201

color, shading, fonts, outlines, and blank cells to structure and
highlight the information in her spreadsheets.

l When Buzz helps Betty with a complex part of the spreadsheet such
as graphing or a complex formula, his work is expressed in terms of
Betty’s original work. He adds small, more advanced pieces of code
to Betty’s basic spreadsheet: Betty is the main developer and he plays
an adjunct role as consultant.

This is an important shift in the responsibility of system design and implementation.
Non-programmers can be responsible for most of the development of a spreadsheet,
implementing large applications that they would not undertake if they had to use
conventional programming techniques. Non-programmers may never learn to program
recursive functions and nested loops, but they can be extremely productive with
spreadsheets. Because less experienced spreadsheet users become engaged and involved
with their spreadsheets, they are motivated to reach out to more experienced users when
they find themselves approaching the limits of their understanding of, or interest in, more
sophisticated programming techniques.

Non-programming spreadsheet users benefit from the knowledge of local developers and
programmers in two ways:

l Local developers and programmers contribute code to the
spreadsheets of less experienced users. Their contributions may
include: macros; the development of sophisticated graphs and charts;
custom presentation formats, such as a new format for displaying cell
values; formulas with advanced spreadsheet functions such as date-
time operations; and complex formulas, such as a formula with many
levels of nested conditionals.

l Experienced users teach less experienced users about advanced
spreadsheet features. This teaching occurs informally, not in training
classes. Often a user will see a feature in someone else’s spreadsheet
that they would like to have, and he or she simply asks how to use it.

As shown in the way Betty and Buzz divide up spreadsheet tasks, the problem solving
needed to produce a spreadsheet is distributed across a person who knows the domain
well and can build most of the model, and more sophisticated users whose advanced
knowledge is used to enhance the spreadsheet model, or to help the less experienced user
improve spreadsheet skills. Compare this division of labor to traditional computing
which requires the services of a data processing department, or expert system
development in which knowledge engineers are necessary. In these cases, the domain
specialist has no role as a developer, and domain knowledge must first be filtered through
a systems analyst, programmer, or knowledge engineer before it is formulated into a
program.

Our interview with Ray offers another example of co-development. Ray is a local
developer who makes use of programmers for some aspects of spreadsheet development.
As with Betty and Buzz, the chief difference between the spreadsheet environment and
traditional programming is that more experienced users develop only specific pieces of
the spreadsheet program, working directly off the basic work done by the original user.
For example, Ray recently commissioned a set of Lotus macros for custom menus to
guide data input for the spreadsheets used by his staff. He prefers to concentrate on using
spreadsheets for forecasting future trends and allocating money among the departments
he serves - his real work. Ray is not interested in becoming an expert macro writer,
even though he has taken an advanced Lotus l-2-3 class where macros were covered. In
the following exchange we are looking at the custom menus:

CSCW 90 Proceedings October 1990

202

Interviewer: . . . [these menus] look like they’d be pretty useful. And
who developed those for you?

Ray: A programmer down in Customer Support.

Interviewer: Okay, not somebody in your group. You just sent out the
work, and . . .

Ray: Yeah, well, essentially, you know, I came at it conceptually,
this is what I’d like to see, and they developed it. So [the programmer]
made [the menus] interactive, set up the customized use.

Ray has reached the limits of his interest in programming advanced spreadsheet features
himself. But he is not limited to spreadsheets without these features; he distributes the
work to someone who has more interest in such things. This task distribution is similar to
traditional software development in that a user provides a specification to a developer for
implementation. The difference, however, is that here the user has constructed the
program into which the contributed code fits. In some sense, the roles of user and “chief
programmer” (Brooks, 1975) have been merged.

Spreadsheets also support cooperation between users with different programming
expertise via tutoring and consulting exchanges. For example, Louis has learned aImost
everything he knows about Lotus l-2-3 from his son Peter. He avoids the manual,
finding it easier to be tutored by Peter. Louis’s spreadsheet use highlights an important
feature of the cooperative development of spreadsheets: because the initial effort to build
something really useful is relatively small, less experienced users, having had the reward
of actually developing a real application, are motivated to continue to learn more, at least
up to a point. Louis is starting to have Peter teach him about controlling the presentation
format; for the first several months of use he concentrated only on creating basic models
of parameters, data values and formulas. In general, users like Louis successfully engage
other, more experienced users in the development of their spreadsheet models. They
make use of problem-solving resources - i.e. more experienced users - in a very
productive manner, building on their existing knowledge in a self-paced way, as they feel
ready to advance.

Distributing tasks across different users and sharing programming expertise are
characteristic of many programming environments - programming in Pascal or Lisp or
C would almost certainly involve such collaboration. However, with spreadsheets the
collaboration is specified quite differently: the end user, usually relegated to “naive user”
status in traditional software development, comes center stage, appearing in the role of
main developer. Spreadsheets have been successful because they give real computational
power to non-programmers. Accountants and biologists and engineers who may never
have taken a computer science course build useful, often complex spreadsheet
applications (see Arganbright, 1986). Spreadsheet users are not “naive users” or
“novices”; they command knowledge of both their domain of interest and the
programming techniques necessary to analyze problems in their domain. With
spreadsheets, problem solving is distributed such that end users do not rely on
programmers as the indispensable implementers of a set of specifications; instead end
users are assisted by programmers who supply them with small pieces of complex code,
or with training in advanced features, as they build their own applications.

Bridging differences in domain expertise

An important aspect of cooperative work is the sharing of domain knowledge. Because
spreadsheet users build their own applications, spreadsheets allow the direct transfer of
domain expertise between co-workers, obviating the need to include a programmer or
other outside specialist in the development cycle. Domain knowledge flows from
manager to staff since managers tend to be more experienced than those they supervise,

CSCW 90 Proceedings October 1990

203

but also from staff to manager, as staff members often have specialized local knowledge
needed by managers. This direct transfer of domain expertise provides efficient
knowledge sharing and helps co-workers to learn from one another. Instead of
transferring domain expertise to a programmer or systems analyst or knowledge engineer
who may never need it again, less experienced workers directly benefit from the
knowledge of co-workers.

Spreadsheets mediate collaborative work by providing a physical medium in which users
share domain knowledge. Spreadsheet users distribute domain expertise by directly
editing each other’s spreadsheets, and by sharing templates.

For example, Laura works very closely with Jeremy, her manager, in developing
spreadsheets. Jeremy happens to be a skilled spreadsheet user who provides macros and
tutoring that Laura and her staff use. However, the more interesting distinction to be
drawn here is centered around Jeremy’s greater experience with their company, its
manufacturing and marketing procedures, and its managerial and budgeting practices.
Spreadsheets provide a foundation for thinking about different aspects of the budgeting
process and for controlling budgeting activity. In the annual “Budget Estimates”
spreadsheet that Laura is responsible for, many critical data values are based on
assumptions about product sales, costs of production, headcounts, and other variables that
must be estimated accurately for the spreadsheet to produce valid results. Through a
series of direct edits to the spreadsheet, Laura and Jeremy fine-tune the structure and data
values in “Budget Estimates.” Laura describes this process:

Interviewer: Now when you say you and your boss work on this thing
[the spreadsheet] together, what does that mean? Does he take piece A
and you take piece B - how do you divide up [the work]?

Laura: How did we divide it up? It wasn’t quite like that. I think more
. . . not so much that we divided things up and said, “OK, you do this
page and you do this section of the spreadsheet and I’ll do that section,”
itwasmore.. . I did the majority of the input and first round of looking
at things for reasonableness. Reasonableness means, “What does the
bottom line look like?” When you look at the 12 months in the year, do
you have some funny swings that you could smooth out? Because you
want it to be a little bit smoother. So what can you do for that? Or, if
you do have some funny spikes or troughs, can you explain them? For
example, there’s one really big trade show that everybody in the
industry goes to . . . So our sales that month are typically low and our
expenses are high. This trade show is very, very expensive. . .

Interviewer: So there’s a spike in your [expenses and a trough in sales]
. . .

Laura: Yeah. So as long as you can explain it, then that’s OK. So
what my boss did was, I would do the first round of things and then I
would give him the floppy or the print-outs and I’d say, “Well this looks
funny to me. I don’t know, is that OK, is it normal? Should we try to do
something about it?” And so what he did was he took the spreadsheets
and then he would just make minor adjustments.

Interviewer: Now was he adjusting formulas or data or . . .?

Laura: Data.

CSCW 90 Proceedings October 1990

204

Interviewer: . . . So it was a process of fine tuning the basic model that
you had developed. And then you of course had to get his changes
back, and look at them and understand them.

Laura: Yes. And one thing he did do, was, he added another section to
the model, just another higher level of analysis where he compared it to
our estimate for this year. He basically just created another page in the
model - he added that on.

In preparing a budget that involves guesswork about critical variables, Laura is able to
benefit from her manager’s experience. They communicate via the spreadsheet as he
literally takes her spreadsheet and makes changes directly to the model. She has laid the
groundwork, provided the first line of defense in the “reasonableness” checking; Jeremy
then adjusts values to conform to his more experienced view of what a good estimate
looks like. Jeremy also made a major structural change to the spreadsheet, adding
another level of analysis that he felt would provide a useful comparison. The spreadsheet
was cooperatively constructed, though not in a simple division of tasks; instead the model
emerged in successive approximations as Laura and Jeremy passed it back and forth for
incremental refinement.

Spreadsheet users often exchange templates as a way of distributing domain expertise.
Jeremy, for example, prepares budget templates used by Laura and her staff. They
contain formulas and a basic structure for data that he works out because of his greater
knowledge of the business. Laura and her staff fill in the templates according to their
knowledge of their individual areas. Laura and her staff are doing more than “data
entry”; as in the “Budget Estimates” spreadsheet, estimates requiring an understanding of
many factors often make up a significant aspect of a spreadsheet, and deriving these
estimates demands thought. Users such as Laura may also specialize a template if their
particular area requires additional information, such as another budget line item. The use
of templates takes advantage of domain expertise at local levels, such as that of Laura and
her staff, and higher levels, such as Jeremy’s.

Ray’s work with spreadsheets provides another example of how users share spreadsheet
templates. Ray prepared “targeting templates” for his staff in order to standardize the
process of targeting expenses. Because of his wider perspective looking across several
departments, Ray is in the best position to develop a standard. The templates also contain
the custom menus that facilitate data input. Each staff member builds the spreadsheet for
his or her area on top of the template, insuring that minimum requirements for data
collection and analysis are met, and insuring that the best possible information at the local
level goes into the spreadsheets. Ray links them together. In these spreadsheets, problem
solving is distributed over users who vary in both level of programming skill and domain
knowledge: Ray, a local developer with domain expertise, provided the basic template; a
programmer created the menus constructed of macros; and Ray’s staff members, domain
experts in their departments, supply data values for their respective areas.

SUMMARY

Spreadsheet development entails the distribution of cognitive tasks in many different
ways: users design and implement spreadsheets cooperatively, share templates, edit each
other’s spreadsheets, and learn from users with more advanced programming expertise
and domain knowledge, The image of an isolated “single user” laboring in privacy is not
borne out by the cases in our study. On the contrary, spreadsheet models emerge as the
product of the closely interwoven efforts of several individuals working cooperatively.

In contrast to traditional computing environments, spreadsheets distribute problem
solving in a different and arguably better way. Spreadsheets enable non-programmers to
build basic spreadsheet models unassisted, giving them control over the design and basic
development of their applications. Spreadsheet products also include macros, graphs and

CSCW 90 Proceedings October 1990

205

charts, advanced functions, simple control constructs and various presentation techniques
which non-programming users take advantage of via collaborative computing. Local
developers and programmers aid less experienced users by writing small pieces of code
for them, and training them in advanced spreadsheet techniques. Spreadsheets thus shift
development tasks away from programmers, but use programmers to their best advantage,
to supply small but technically advanced assistance to developers. Given that there never
seem to be enough programmers to go around for all the applications non-programmers
want, spreadsheets appear to have hit upon a happy solution, distributing tasks such that
non-programmers can get on with their work, yet not be limited by their lack of
programming sophistication.

Because spreadsheet users have direct computational power, they are in a good position
to directly share domain knowledge with one another. There is no need to give
specialized domain knowledge to a programmer to code into a program - end users do
that themselves. When data values based on local knowledge are needed, as with the
spreadsheet templates we discussed, or data values need to be adjusted by more
knowledgeable domain experts, such work is handled among co-workers themselves,
without outside technical help.

Spreadsheets support an informal but effective interchange of programming expertise and
domain knowledge. Spreadsheets accomplish the distribution of cognitive tasks across
different kinds of users in a highly congenial way; sojourners of the twinkling lights mix
it up with crafters of nested loops - and all with software for which no explicit design
attention was given to “cooperative use.”

ACKNOWLEDGEMENTS

Thanks to Dave Duis, Danielle Fafchamps, Nancy Kendzierski, Robin Jeffries, Jasmina
Pavlin, and Craig Zarmer for helpful discussions and comments on earlier drafts of this
paper. We are grateful to our informants for finding time in crowded schedules to talk to
us, and for the careful, reflective explanations they provided about their use of
spreadsheets.

REFERENCES

Alsop, S. Spreadsheet users seem satisfied with what they already have. InfoWorld,
September 11,1989,102-103.

Arganbright, D. Mathematical modeling with spreadsheets. Abacus, 1986,3(4), 18-31.

Bannon, L., & Schmidt, K. CSCW: Four characters in search of a context. Proceedings
of the First European Conference on Computer Supported Cooperative
Work EC-CSCW’89, Gatwick, England, 358-372.

Bjerknes, G., Ehn, P., & Kyng, M. Computers and democracy: A Scandinavian
challenge. Brookfield, Vermont: Gower Publishing Company, 1987

Bosk, C. Occupational rituals in patient management. New England Journal of
Medicine, 1980,303(2), 71-76.

Brooks, F. The mythical man month: Essays on software engineering. Reading, Mass.:
Addison-Wesley Publishing Company, 1975

Brown, P., & Gould, J. D. How people create spreadsheets. ACM Transactions on Office
Information Systems, 1987,5(3), 258-272.

CSCW 90 Proceedings October 1990

206

Chandrasekaran, B . Natural and social system metaphors for distributed problem
solving: Introduction to the issue. IEEE Transactions on Systems, Man and
Cybernetics, 1981. Vol. SMC-11(l), 1-5.

Doyle, J. R. Naive users and the Lotus interface: A field study. Behavior and
Information Technology, 1990,9(l), 81-89.

Grudin, J. Why CSCW applications fail: Problems in the design and evaluation of
organizational interfaces. CSCW‘88: Proceedings of the Conference on
Computer Supported Cooperative Work, 1988, Portland, Oregon, 85-93.

Holland, D., & Valsiner, J. Cognition, symbols and Vygotskty’s developmental
psychology. Ethos, 1988,16(3), 247-272.

Hutchins, E., Hollan, J., & Norman, D. Direct manipulation interfaces. In D. Norman &
S. Draper (Eds.), User-centered system design. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1986.

Janowski, R. Spreadsheets: An initial investigation. Internal technical report, Hewlett-
Packard Laboratories, Bristol, England, 1987.

Kay, A. Computer software. Scientific American, 19845(3), 53-59.

Lave, J. Cognition in practice: Mind, mathematics and culture in everyday life.
Cambridge: Cambridge University Press, 1988.

Lewis, C., & Olson, G. Can principles of cognition lower the barriers to programming?
Empirical studies of programmers: Second workshop. Norwood, New
Jersey: Ablex,1987.

Napier, H., Lane, D., Batsell, R., & Guadango, N. Impact of a restricted natural language
interface on ease of learning and productivity. Communications of the
ACM, 1989,32(10), 1190-l 198.

Nardi, B., & Miller, J. R. Twinkling lights and nested loops: Distributed problem solving
and spreadsheet development. International Journal of Man-Machine
Studies, 1990(a), in press.

Nardi, B., & Miller, J. R. The spreadsheet interface: A basis for end user programming.
Proceedings of ZnteractPO, Cambridge, England, 1990(b).

Newman, D. Apprenticeship or tutorial: Models for interaction with an intelligent
instructional system. Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, Ann Arbor, Michigan, pp. 781-788.

Norman, D. Cognitive artifacts. Presentation at the Workshop on Cognitive Theory and
Design in Human-Computer Interaction, Kittle House Inn, Chappaqua, New
York, 1989.

Norman, D., & Hutchins, E. Computation via direct manipulation. Final Report to
Office of Naval Research, Contract No. NOOO14-85-C-0133. University of
California, San Diego, 1988.

Olson, J., & Nilsen, E. Analysis of the cognition involved in spreadsheet software
interaction. Human-Computer Interaction, 1987-1988,3,309-349.

CSCW 90 Proceedings October 1990

207

Panko, R. End user computing: Management, applications, and technology. New York:
John Wiley and Sons, 1988.

Piersol, K. Object-oriented spreadsheets: The analytic spreadsheet package. In OOPSLA
‘86 Proceedings, 1986,385-390.

Seifert, C., & Hutchins, E. Learning from error. Proceedings of the Eleventh Annual
Conference of the Cognitive Science Society, Ann Arbor, Michigan, 42-49.

Spenke, M., & Beilken, C. A spreadsheet interface for logic programming. In K. Bite &
C. Lewis (Eds.), Proceedings of the CffY89 Conference on Human Factors
in Computing Systems, Austin: ACM Press, 1989.

Van Emden, M., Ohki, M., & Takeuchi, A. Spreadsheets with incremental queries as a
user interface for logic programming. ICOT Technical Report TR-144,
1985

Vygotsky, L. S. Thought and language. Cambridge, Massachusetts: MIT Press, 1979.
(First published 1934.)

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the tide of the publication and its date appear, and notice. is given that copying
is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission,

@ 1990 ACM 089791402-3/90/0010/0208 $1.50

CSCW 90 Proceedings October 1990

208

